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Abstract

Different preprocessing methods (direct orthogonal signal correction (DOSC), standard normal variate (SNV),

multiple scatter correction (MSC), first and second derivation, offset correction and detrend correction) are applied to

two sets of NIR spectra of a dermatological cream with different concentrations of an active compound. The influence

of these preprocessing methods on the classification of the samples into the right concentration class is evaluated using 1

and 3 nearest neighbour method (with Euclidean distance and correlation coefficient as distance parameters) as

classification method. PLS and PCR modelling are also used to make a prediction of the concentration of the active

compound. The direct orthogonal signal correction gives best results in most of the classification methods. # 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

Clinical study lots are designed to compare the

effect of new drugs with a placebo formulation or

with existing drugs from the same class. Identifica-

tion of such study lots is usually carried out with

chromatographic methods, which are time con-

suming and elaborate, since samples need a lot of

sample preparation. Industry is looking for faster

methods and NIR combined with pattern recogni-

tion methods seems to be a promising technique

[1�/6].

In this work, NIR is applied to identify creams

with different concentrations of an active com-

pound. After the NIR spectra are acquired, a

preprocessing method can be applied to remove

certain physical light effects, thus enhancing the

chemical information in the spectra. In this work,

the effect of seven different preprocessing methods

on the classification of the samples is analysed.

The results from the relatively new preprocessing

method called direct orthogonal signal correction
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(DOSC) are studied in more detail and compared
with the results from other preprocessing methods.

The different classes are known and a new sample

has to be assigned to the most similar class. The k-

nearest neighbour method in two variants (1

nearest neighbour and 3 nearest neighbours) is

used as a classification method. This is a non-

parametric method in which no assumptions of the

data distribution are required [7]. The Euclidean
distance (ED) and the correlation coefficient (CC)

are used as (dis-)similarity measures.

Two sample presentations are used. First an

optical fibre attached to the instrument is used to

perform the NIR measurements and a second way

of measuring is the internal measuring mode of the

instrument in which the sample cup is put into the

sample drawer of the instrument. To evaluate the
results, the correct classification rates (CCR) of

the test set are compared.

2. Theory

2.1. Preprocessing methods

2.1.1. Direct orthogonal signal correction (DOSC)

Orthogonal signal correction [8] is applied to

NIR spectra (X ) to remove from the spectra as

much as possible the variation that is unrelated

(i.e. orthogonal) to y , the vector of the parameter

which has to be modelled (e.g. the concentration).

After the DOSC correction, a new PLS or PCR

model can be built and this model will be less

complex than the model built with the original,
uncorrected data. Algorithms to perform an

orthogonal signal correction have been proposed

by Wold [9], Sjöblom [10], Wise and Gallagher [11]

and Fearn [12]. A similar method called direct

orthogonalisation has been developed by Anders-

son [13]. All of these methods find an approximate

solution to the problem set out, i.e. finding a

subspace of X that is orthogonal to y and
accounts for the largest possible proportion of

X -variance. Recently, the exact solution was

found independently by Westerhuis et al. [8]. The

corresponding algorithm was coined direct ortho-

gonal signal correction (DOSC). The first step in

this algorithm is a decomposition of X (the

spectral matrix) into two orthogonal parts, one
part related to y and another part that is

orthogonal to it. This is carried out by projecting

(or regressing) y onto X . In this way, one

decomposes y into ŷ; the part of y lying in X -

space and f , the residual that is unrelated to X , i.e.

y� ŷ�f (1)

For spectral data, X is generally of less than full

column rank giving y�/y . The column rank of a

matrix is the number of independent columns

(wavelengths). Since in (NIR) spectra, neighboring

wavelengths are not independent, but highly
correlated, the rank of a spectral matrix is less

than its number of columns.

Next, X is projected onto ŷ giving X̂ and E , the

residual part of X that is orthogonal both to ŷ and

y , i.e.

X�X̃�E (2)

Principal component analysis (PCA) or singular

value decomposition (SVD) is applied to E in

order to find a small number of principal compo-

nents T corresponding to the largest singular

values. This T is a basis for the low-dimensional

subspace that accounts for the maximum of
variance of E , the part of X that is unrelated to y .

The DOSC-corrected spectra of the calibration

data can now be written as:

XDOSC�X�TP? (3)

where TP? is the ‘orthogonal’ part removed from
the original spectra with P the loading matrix:

P�XT(T?T)�1 (4)

The directions T can be expressed as linear

combinations of X :

T�XR (5)

Here, R is the matrix of weights of the original

variables in the principal orthogonal directions,

which can be obtained via X�, the Moore�/

Penrose generalised inverse of the original data X :

R�X�T (6)

Given weights R and loadings P , one can directly

obtain corrected spectra for new data:
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XDOSC�X �XRP? (7)

2.1.2. Other preprocessing methods

2.1.2.1. Standard normal variate transformation

(SNV). SNV [14�/17] is a mathematical transfor-

mation method of the log(1/R ) spectra used to

remove slope variation and to correct for scatter

effects. Each spectrum xi is corrected individually

by first centring the spectral values (i.e. subtracting

the mean log(1/R ) value x̄i of the individual

spectrum from each value xij ). Then the centred

spectra are scaled by the S.D. (si) calculated from
the individual spectral values.

The SNV transformed spectrum (xi ,cor) is:

xi;cor�(xi�x̄i)=si (8)

2.1.2.2. Multiplicative scatter correction (MSC).

MSC [14�/16,18] corrects for difference in light

scatter between samples before calibration. The

average spectrum x̄ of the calibration set is chosen

as a reference spectrum. Then each spectrum xi is

first modelled as follows:

xi �ai�bix̄�ci (9)

where ei is the vector of residuals representing the
difference between x̄ and xi (ei represents the

chemical information in xi), ai is the intercept and

bi the slope. ai , bi and ei can be estimated by linear

regression of xi versus x̄: The corrected spectrum

si is written as:

si�(xi�ai)=bi (10)

2.1.2.3. First and second derivation after smooth-

ing. By calculating first and second derivatives,

baseline drifts are eliminated and also small
spectral differences are enhanced. To avoid en-

hancing the noise, which is a consequence of

derivation, spectra are first smoothed [19,20].

This smoothing is performed by using the

Savitzky�/Golay algorithm, which is a moving

window averaging method: a window is selected

where the data are fitted by a polynomial of a

certain degree. The central point in the window is
replaced by the value of the polynomial.

2.1.2.4. Offset correction. Offset correction [21] is

used to correct for a parallel baseline shift. The

absorbance of a chosen wavelength c (usually the

first) is subtracted from each spectrum indepen-

dently.

xi;o�xi�xic (11)

with xi,o the offset transformed spectrum, xi the

original spectrum and xic the absorbance of the

chosen wavelength of that spectrum.

2.1.2.5. Detrending. Detrending [17] is applied on

spectra to remove the effects of baseline shift and
curvi-linearity. It is characteristic for NIR spectra

that the log(1/R ) values increase from 1100 to 2500

nm. This effect is generally linear but for densely

packed samples, it becomes curvilinear.

The method consists of modelling the baseline

as a function of wavelength with a second-degree

polynomial and this function is then subtracted

from each spectrum independently.

xi;d �xi�bi (12)

where bi is the baseline ‘spectrum’ at wavelength i

computed with the second-degree model.

2.2. Feature selection method

2.2.1. Fisher criterion (FC)

The Fisher criterion [21] represents the ratio of

the between-group variance over the within group

variance. Variables with a high between group

variance and a small within group variance have

an important value for the discrimination. The

Fisher criterion (FC) is calculated as follows:

FC�
Xk

j�1

nj(x̄ji� x̄i)
2=

Xk

j�1

(nj�1)s2
ji (13)

with k , the number of groups, nj the number of

objects in group j , xji the mean absorbance of the

objects belonging to group j at the i th wavelength,

xi the mean absorbance of the objects belonging to

all groups at the ith wavelength and sji is the S.D.

of the absorbance of the objects belonging to
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group j at the ith wavelength. The original
variables (wavelengths) are ordered from the high-

est to the lowest FC-value and then selected top-

down, so that only important variables are re-

tained and less important ones are rejected.

2.3. Classification method

2.3.1. k-Nearest neighbours method

kNN [7] is a simple non-parametric classifica-
tion method, where the distances between an

unknown object and all objects of the training

set are calculated. The new object is attributed to

the class to which the distance is the smallest. The

variants used here are the 1 and 3 NN method. In

the 3 NN variant, the distance of the three nearest

neighbours is calculated and the new sample is

classified into the group to which the majority of
the three samples belong. The condition to apply

this method is that the classes consist of similar

amounts of objects. Otherwise, more complex

variants are required. Distance parameters used

in this study are the Euclidean distance (ED) and

the correlation coefficient.

2.3.1.1. Euclidian distance. The Euclidian distance

(ED) [22] is the geometric distance between two

objects. The distance Dkl between two objects k

and l can be mathematically described as:

Dkl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j�1

(xkj�xlj)
2

vuut

with m the number of variables. The closer the

distance is to zero, the more similar the objects are.

2.3.1.2. Correlation coefficient. The correlation

coefficient r(n , m ) [22] between two objects n

and m can be defined as:

r(n;m)�

XI

i�1

(xin � x̄n)(xim � x̄m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI

i�1

(xin � x̄n)2
XI

i�1

(xim � x̄m)2

vuut

with I the number of variables and xin the value of

the ith variable for object n . The closer this

coefficient is to 1 the more similar the two objects
are.

2.3.2. PLS and PCR modelling

Since the aim in this study is to make a

classification, no precise prediction of the concen-

trations is needed. The optimal complexity of the

models is not chosen according to the lowest root

mean square error of cross validation (rmsecv),
but a cut off value of 0.50 for the rmsecv is chosen

to select the complexity of the models. The spectra

are first column centred.

2.3.2.1. Principal component regression (PCR).

PCR [22,23] is a multivariate calibration method

that consists of two steps. The first step is a

principal component analysis (PCA) of the data
matrix X . In this step, the original variables (e.g.

absorbances at different wavelengths) are con-

verted into a smaller number of latent variables

(scores on principal components (PC’s)) in order

to reduce the dimensionality of the original data

set. The PC’s are constructed so that the first few

retain most of the variation contained in all the

original variables. The second step is a multiple
linear regression (MLR) between the scores ob-

tained in the PCA and the characteristic that has

to be modeled. The order of the PC’s used in the

MLR step is chosen according to the correlation

coefficient with respect to the y characteristic. In

what follows, the y characteristic is the concentra-

tion of active compound in the cream but other

properties can also be modeled.

2.3.2.2. Partial least squares regression (PLS).

PLS [22] is a similar method to PCR. However,

in the first step of PCR only X is used to compute

the PC’s. In PLS, the equivalent of the PC’s are

obtained such that they not only represent X well,

but at the same time are correlated well with the y .

3. Experimental

3.1. Samples

The creams used in this work contain 1 and 3%

of an active compound. In addition, placebo
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creams are measured. The placebo cream consists
of nine ingredients of which water is an important

part.

3.2. Instrumentation

The spectra are measured with a Bran�/Luebbe

InfraAlyser 500 spectrometer. For the measure-

ments with the optical fibre, a Bran�/Luebbe
EDAPT-1 Fibre Optic Reflectance Probe is at-

tached to the InfraAlyser.

3.3. Sample presentation

Two different sample presentations are investi-

gated. The first measurements were carried out

with the optical fibre. The spectra are taken
between 1100 and 2200 nm (with a measuring

point every 2 nm) because the optical fibre does

not allow performing accurate measurements

above 2200 nm. The creams are put into a glass

container with a filling height of 0.5 and 0.25 cm

and placed onto the optical fibre, so that the light

has to pass through the glass material. A second

way of sample presentation is the so-called internal
measuring mode. The cream is put into a special

measuring cup that can be introduced into the

sample drawer of the spectrometer. These cups are

covered with a microscope glass slide.

3.4. Computer program

For all computations, a Matlab (version 4.0)
Toolbox, designed in our laboratory, was used.

4. Results and discussion

4.1. Measurements with the optical fibre

For each concentration level (0, 1 and 3%) of the
active compound, four cups are filled with the

cream: two cups are filled with a cream layer of 0.5

cm and two cups are filled with a layer of :/0.25

cm to evaluate the influence of the layer thickness.

Unfortunately, the measurements of one of the

0.25 cm cups for the 3% level were not carried out

due to a measurement error. The measurements

are performed at 209/1 8C. Each sample is
measured three times a day during 3 subsequent

days, so that 99 spectra are obtained. The data set

is divided randomly into two subsets: one calibra-

tion or training set with 57 spectra and a test set

with 42 spectra. On the plots in Fig. 1 the test

spectra are shown without pre-treatment and after

DOSC.

A clear distinction is observed between the three
different concentrations for the DOSC pre-treated

data, but not for the original data. The DOSC

method works as a kind of background subtrac-

tion: for the placebo creams (0%), the spectrum is

filtered away. The scores of the test spectra on the

first two PCs are also plotted to have an idea how

well the classes can be separated from each other

after a particular pre-treatment (Fig. 2).
The differentiation obtained for the different

pre-treatment methods can be made on the PC1�/

PC2 score plot. This differentiation is most clear

after DOSC although also without pre-treatment,

after first and second derivation, with respectively,

a smoothing window of 15 and 21 measuring

points and after detrending a distinction between

the three concentrations can be made. On the PC
score plots it can be seen that sometimes along PC

2, there are two subgroups in each concentration

group. The most compact subgroup represents the

spectra from the samples with a filling height of 0.5

cm, the more disperse subgroup consists of sam-

ples with a filling height of 0.25 cm. This can be

explained by the fact that filling a cup with 0.25 cm

of cream so that the height is constant, is more
difficult than filling it with 0.5 cm. It also shows

that filling height has an effect on the spectrum

and should therefore be controlled.

4.1.1. k Nearest neighbour method

The first step in modelling is selecting the

optimal number of features which has to be used

in the model. The features to include in the model

(wavelengths or principal components (PC’s)) are
chosen according to the highest FC. First, a

classification model is build using the absorbances

at the wavelength (or the scores on the PC) with

the highest FC, i.e. with the highest discrimination

capacity between the different groups. A leave one

out cross validation (LOOCV) is performed on the
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calibration set and the correct classification rate

(CCR) is retained. Then the feature with the

second highest FC is added to the model and a

LOOCV is performed again. This is repeated for

the first 25 variables (wavelengths or PCs), ordered

according to the highest FC. The model with the

highest CCR and the smallest number of features

is used as classification model. Table 1 represents

the optimal number of features, this means the

number of features (wavelengths or PC’s) with

which the highest correct classification rate (CCR)

is reached for the calibration set and the corre-

sponding CCR values for the test set.

Using the Euclidean distance as distance para-

meter for the k nearest neighbour method gives

better results for the CCR than using the correla-

tion coefficient. For the original spectra (without

pre-treatment), for the first derived spectra, for the

detrend corrected and for the DOSC corrected

spectra for the four studied methods using the

Euclidean distance, it is possible to make classifi-

cations with a single feature and with a CCR of 1.

In this case, DOSC pre-treated data give no better

results than the original spectra or than some other

pre-treatments. This can be explained because of

the small amount of variance in the data due to

other sources than differences in concentration

(same temperature, good filling of the cups,...).

For the SNV pre-treated data, the CCR also has

a value of 1 but the classification model has a

complexity of two to four features depending on

the chosen method (1 NN, 3 NN and wavelengths

or PCs as features). In this case, the classification

model is of lower complexity using wavelengths as

features in the model instead of using PCs. Using

the MSC pre-treated data for the classification,

two to three features are needed to make the

classification. For this data set, the offset correc-

tion does not seem to be the best way to pre-treat

the spectra. For the 1 NN method, the optimal

complexity of the classification model is the same

as for the SNV and MSC pre-treated data, but the

CCR is worse. For the 3 NN method, using the

Euclidean distance, seven PCs are needed to make

the classification and the correct classification rate

is B/1.

The results of the kNN method using correla-

tion coefficients as distance parameter, show that

the optimal complexity of the classification models

is higher than using the ED as distance parameter.

Using wavelengths as features, a CCR�/1 is

obtained after SNV (1 NN) and after first and

second derivation (with smoothing) but the classi-

fication models are complex. In this case, DOSC

gives bad results using wavelengths as features, but

for the classification using PCs as features, DOSC

gives the best CCR results. Using PCs for the

classification, generally the optimal complexity of

the classification models is better but a CCR equal

to 1 for the test set is not obtained.

Comparing the 1 and 3 NN method, generally

one can conclude that the 1 NN method gives

better CCR values for the same pre-treatment

using the CC as distance parameter. Looking to

Fig. 1. Spectra of the test set (external measurements): (a) without pre-treatment and (b) after DOSC.
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the optimal complexity when the CC is used, no

general conclusion can be made about the fact that

1 or 3 NN gives better results.

For this data set it is clear that Euclidean

distance is preferable above the correlation coeffi-

cient as distance parameter in the kNN method. It

is even possible to classify all objects of the test set

into the right class using only one feature (wave-

length or PC) of the original spectra. Also for the

first and second (only with PCs) derived spectra,

the detrend corrected and the DOSC corrected

spectra, one feature is enough to obtain optimal

correct classification rates.

4.1.2. PLS and PCR modelling

A second method to make classifications is

using PLS and PCR modelling. The first step in

this method is calculating the rmsecv values of the

calibration set with models using one to 25

components. The spectra are first column cen-

tered. For the PCR models, the order of the PCs,

used in the models is chosen according to the

correlation coefficient to the concentration. In this

study, it is not the aim to predict the exact

concentration of the new samples, but a classifica-

tion of new samples has to be made. Therefore, it

is not necessary to look for the lowest rmsecv. A

Table 1

Optimal number of features (o.n.f.) and correct classification rate (CCR) values of the corresponding models for the measurements

with the optical fibre after different preprocessing methods

Selected features Euclidean distance Correlation coefficient

1 NN 3 NN 1 NN 3 NN

wl PC wl PC wl PC wl PC

No pt.

o.n.f. 1 1 1 1 25 6 24 5

CCR 1 1 1 1 0.6190 0.9524 0.4762 0.8333

SNV

o.n.f. 2 3 2 4 19 4 24 4

CCR 1 1 1 1 1 0.8810 0.9762 0.8571

MSC

o.n.f. 2 3 2 2 11 6 18 4

CCR 1 1 1 0.9762 0.9524 0.8333 0.9524 0.8333

1st der.

o.n.f. 1 1 1 1 25 9 23 4

CCR 1 1 1 1 1 0.9286 1 0.8810

2nd der.

o.n.f. 1 1 1 1 13 13 13 13

CCR 0.9762 1 0.9762 1 1 0.8571 1 0.7381

Offset

o.n.f. 2 3 2 7 23 4 23 4

CCR 0.7619 0.9524 0.8095 0.9524 0.7143 0.9286 0.5476 0.7619

Detrend

o.n.f. 1 1 1 1 10 6 8 7

CCR 1 1 1 1 0.8810 0.7857 0.8095 0.7857

DOSC

o.n.f. 1 1 1 1 22 4 7 5

CCR 1 1 1 1 0.7619 0.9762 0.6905 0.9762

wl, Wavelength; PC, principal component.
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cut off value of 0.50 for the rmsecv is used to select

the complexity of the model. The least complex

model with a rmsecv smaller than 0.50 is used to

make a ‘rough’ prediction of the concentration of

the new samples. Then the samples are classified

using as rules: a sample with a predicted concen-

tration smaller than 0.5% is classified into the 0%

group, a sample with a predicted concentration

between 0.5 and 2% belongs to the 1% class and all

samples with a predicted concentration higher

than 2% are classified into the 3% group. To

evaluate the performance of the models, the CCR

is calculated for the test set. Table 2 shows the

complexities of the models, after the different

preprocessing methods, the rmsecv and the CCR

values for both PLS and PCR models.
PLS and PCR give the same number of compo-

nents. For most preprocessing methods, the CCR

values of the PLS models are equal or better than

the PCR models. The best results for model

complexity and for CCR are obtained with the

DOSC pre-treated data. A CCR of 1 is obtained

with a model using one PLS-component or one

PC. Comparing the rmsecv values for the calibra-

tion set with the other pre-treatments, DOSC

performs very well: with only one component, a

rmsecv of 0.0016 is achieved for the PLS model

and using the PCR model a rmsecv of 0.0230 is

achieved. For all PLS models, except for the

detrended spectra, a CCR of 1 is obtained. For

the original (untreated), the first and second
derived and the offset corrected data, only two

PLS components are required. The SNV and the

MSC pre-treated data need three PLS components

to achieve a CCR of 1.

4.2. Internal measuring mode

In this measuring mode, ten cups of each

concentration are filled and covered with a micro-

scope glass slide. Five are filled in a smooth way,

with a constant filling height. The other five are

filled in a bad way, i.e. with a thin layer of cream,

with a raw surface or in a non-flat way. Also in
this measuring mode, the samples are measured

three times a day during 3 subsequent days. The

measurements are performed at 209/1 8C and also

at 309/1 8C. These sources of variance (different

temperature, bad filling) are introduced to see to

what extent a certain preprocessing method is able

to filter the spectral variances due to them and to

what extent these factors are critical in the
subsequent classification procedure. The spectra

are taken between 1100 and 2500 nm. After having

examined the spectra visually, four spectra are

deleted because an error occurred during the

measurements. The 536 remaining spectra are

divided randomly into a calibration set of 337

Table 2

Number of components (# comp.), root mean square error of cross validation values (rmsecv) and correct classification rates (CCR) of

the corresponding models for the measurements with the optical fibre after different preprocessing methods

No pt. SNV MSC 1st Der. 2nd Der. Offset Detrend DOSC

PLS

# comp 2 3 3 2 2 2 2 1

rmsecv 0.3720 0.2028 0.2003 0.4264 0.4142 0.4042 0.4540 0.0016

CCR 1 1 1 1 1 1 0.9762 1

PCR

# comp 2 3 3 2 2 2 2 1

rmsecv 0.4187 0.3968 0.4091 0.4306 0.4679 0.4160 0.3978 0.0230

CCR 1 0.9524 0.9524 0.9524 1 1 1 1

Fig. 2. PC 1�/PC 2 score plots of external measurements after (a) no pre-treatment; (b) SNV; (c) MSC; (d) first derivation; (e) second

derivation; (f) offset correction; (g) detrend correction; (h) direct orthogonal signal correction. *�/0.25 cm filling height; �/�/0.50 cm

filling height.
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Fig. 2
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Table 3

Optimal number of features (o.n.f.) and correct classification rate (CCR) values of the corresponding models for the internal

measurements after different preprocessing methods

Selected feature Euclidean distance Correlation coefficient

1 NN 3 NN 1 NN 3 NN

wl PC wl PC wl PC wl PC

No pt.

o.n.f. 9 12 7 12 25 14 25 20

CCR 0.9146 0.9698 0.9397 0.9447 0.6784 0.9296 0.6432 0.8995

SNV

o.n.f. 9 6 22 7 7 9 24 11

CCR 0.8291 0.9849 0.9045 0.9899 0.4271 0.9698 0.3568 0.9497

MSC

o.n.f. 25 6 13 7 7 9 25 10

CCR 0.8844 0.9899 0.9095 0.9899 0.4221 0.9698 0.3568 0.9548

1st Der.

o.n.f. 15 5 16 5 16 9 16 24

CCR 0.9849 0.9950 0.9950 0.9899 0.9950 0.9598 0.9950 0.9497

2nd Der.

o.n.f. 1 4 1 4 5 17 5 11

CCR 1 0.9950 1 0.9849 1 0.9598 1 0.9397

Offset

o.n.f. 25 8 20 5 22 8 18 12

CCR 0.8693 0.9749 0.7889 0.9799 0.9246 0.9296 0.9397 0.8945

Detrend

o.n.f. 10 4 6 4 11 11 10 8

CCR 0.9598 0.9698 0.9397 0.9296 0.8593 0.9598 0.8040 0.9347

DOSC

o.n.f. 1 1 1 1 24 25 25 20

CCR 1 1 1 1 0.8844 0.9950 0.8442 0.9899

Table 4

Number of components (# comp.), root mean square error of cross validation values (rmsecv) and correct classification rates (CCR) of

the corresponding models for the internal measurements after different preprocessing methods

No pt. SNV MSC 1st Der. 2nd Der. Offset Detrend DOSC

PLS

# comp 5 4 4 3 3 5 5 1

rmsecv 0.4869 0.4758 0.4800 0.3378 0.2199 0.4553 0.1994 0.0024

CCR 0.9095 0.9347 0.9347 0.9950 1 0.9598 1 1

PCR

# comp 3 4 4 3 3 4 3 1

rmsecv 0.4932 0.4835 0.4815 0.4400 0.2601 0.4520 0.4712 0.0024

CCR 0.9548 0.9045 0.9095 0.9447 0.9950 0.9698 0.9146 1
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spectra and a test set of 199 spectra. The spectra of

the test set are shown in Fig. 3. This figure also
shows the DOSC pre-treated spectra.

The PC1�/PC2 scores of the test spectra, before

and after every pre-treatment are plotted to have

an idea how well the classes can be separated from

each other after a particular pre-treatment (Fig. 4).

After some pre-treatments, two groups are present

for each concentration on the PC1�/PC2 score

plot, for instance for the DOSC corrected data.
The smallest group represents the measurements of

the good filled cups while the variation on the

spectra of the bad filled cups is bigger. A clear

separation according to the temperature cannot be

made on this PC1�/PC2 plot because the variation

due to the bad filling of the cups is much higher

than the variation due to the temperature differ-

ences.

4.2.1. k Nearest neighbour method

Table 3 shows the optimal number of factors
(o.n.f.) and the CCR results for each pre-treat-

ment. Compared with the first data set, the

differences between the results from the Euclidean

distance and the correlation coefficient as distance

parameter, are not so clear although it can be seen

that for almost every pre-treatment, the perfor-

mance is better for the ED. With the ED a CCR�/

1 is obtained with the DOSC corrected spectra (for

the four methods) and with the second derived

spectra (only when wavelengths are used as

features). For these pre-treated data, one feature

(l�/2284 nm or the first PC for the DOSC

corrected data, l�/1686 nm for the second derived

spectra) is enough to classify all new samples into

the right class.
A CCR�/0.9950 is obtained for the first derived

spectra using five principal components and 1

nearest neighbour and also using 16 wavelengths

and the 3 NN method. The second derived spectra

also give a CCR�/0.9950 when the 1 NN method

with four PCs used. Other methods giving CCR

results higher than 0.98 are: SNV and MSC pre-

treated data using PCs as features, both for the 1

and 3 NN method; first derived spectra using

wavelengths for the 1 NN and using PCs for the 3

NN method and the second derived spectra using

the 3 NN method with PCs as features. CCR

results B/0.90 are obtained with the SNV and

MSC corrected data using the 1 NN method

combined with wavelengths as features. Offset

correction using wavelengths as features is the

classification method that gives the worst results

because a high number of features is required and

Fig. 3. Spectra of the test set (internal measurements): (a) without pre-treatment and (b) after DOSC.

Fig. 4. PC1�/PC2 score plots of internal measurements after different pre-treatments: (a) no pre-treatment; (b) SNV; (c) MSC; (d) first

derivation; (e) second derivation; (f) offset correction; (g) detrend correction; (h) direct orthogonal signal correction. *�/0%; �/�/1%;

�/�/3%.
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Fig. 4 (Continued)
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the CCR results are even B/0.80 for the 3 NN
method.

With the correlation coefficient as distance

parameter, poor CCR results are obtained for

the untreated spectra and for the SNV and MSC

corrected spectra when wavelengths are used. Also

the offset corrected data using PCs (3 NN) and

detrended and DOSC corrected data, when wave-

lengths are used as features give no good CCR
results. Good results are obtained with the first

derived spectra, using wavelengths as features and

also with the DOSC corrected data using PCs as

features, although a high number of features are

required. A CCR�/1 is obtained with the second

derived spectra, using wavelengths as features.

4.2.2. PLS and PCR modelling

Before the modelling, all spectra are column
centered. Evaluating the results of the PLS and the

PCR modelling, Table 4 shows that the number of

components used to obtain a rmsecv value B/0.50,

is smaller for the untreated data, for the offset

corrected data and for the detrended data using

PCR models. For the other pre-treated data, the

same number of components is required for PLS

as for PCR. For the untreated spectra and for the
offset corrected spectra, the CCR values are better

(higher) using PCR as modelling technique. For all

other pre-treated spectra, PLS modelling gives

better CCR values. With PLS a CCR�/1 is

obtained after second derivation, detrending and

DOSC. The number of PLS components required

is 3, 5 and 1, respectively. When using PLS as

modelling technique, the original spectra and SNV
and MSC corrected spectra give no good CCR

results. Here again, DOSC gives the best results,

because with only one PLS component, an optimal

classification of the test samples is obtained.

Using PCR as modelling technique, the best

result is also obtained after DOSC. The one PC

model gives a CCR�/1. Second derived spectra

also give good CCR results (0.9950), but for this
pre-treatment, three principal components are

required in the model. SNV and MSC pre-treated

spectra give the lowest CCR.

In conclusion, it can be said that PLS gives

better results as modelling technique for these data

and that DOSC is the best preprocessing technique

because it gives CCR�/1 with the simplest model
(only one component).

5. Conclusions

The second data set is more heterogeneous (bad

filling, two different temperatures), so that the

effect of the pre-treatments is clearest on this data

set. It can be observed that DOSC pre-treated data

show the clearest separation between spectra from
the different classes. For all methods using the

Euclidean distance as distance parameter, a perfect

classification is obtained after DOSC correction,

with only one feature. Also when a PLS or a PCR

model is used to predict the concentration, only

one feature is required. Second derivation also

gives good CCR results both for the kNN method

and for the PLS or PCR models. In this classifica-
tion application, DOSC is shown to be an effective

technique to remove information from the spectra

not related to the concentration of active com-

pound of the cream. These pre-treated spectra,

combined with kNN method, using the Euclidean

distance as distance parameter, always give a

correct classification using only one feature (PC

or wavelength). Also, PLS or PCR modelling after
the DOSC correction yield classification results

that are excellent with a model using only one

component.
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